

Colector Solar Chromagen. Modelo: PA-F


Sistemas Domiciliarios y Centrales

Descripción

Colector Solar Térmico de alta eficiencia y durabilidad. Ideal para instalaciones solares térmicas residenciales y/o industriales.

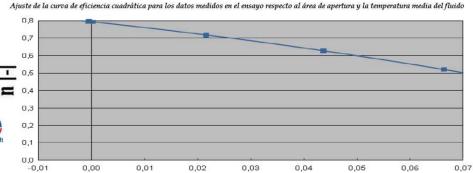
Dimensiones y Pesos

Largo Total	2190 mm
Ancho Total	1275 mm
Fondo	90 mm
Área Total	2,80 m ²
Área de Apertura	2,58 m ²
Área del Absorbedor	2,54 m²

Peso en vacío	41 Kg
Capacidad del fluido	1,5 L
Fluido caloportador	Agua + Glicol
T de estancamiento	220°C
Flexión máxima del captador	1000 Pa

Presiones de prueba y caudal recomendado

Presión de timbre	14 Bar	
Presión máxima de trabajo	10 Bar	
Caudal recomendado	45 l/h.m²	
Caída de presión (mm.c.a.)	2,24.qi²+3,72.qi (l/min)	


Calid	lades	de fa	abric	ació	n

Absorbedor	Aluminio c/ recubr. selectivo α :0.95 ϵ :0,05	
Parrilla tubos	Cobre 8 y 22 mm	
Aislamiento	Poliuretano 25 mm	
Vidrio solar	3,2 mm	
Carcasa	Aluminio anodizado	
Conexiones	3/4"	

Curva de rendimiento térmico y certificaciones

 $\eta_o = 80,1\%$ $k1 = 3,195 \text{ W/m}^2.\text{K}$ $k2 = 0,016 \text{ W/m}^2.\text{K}^2$

